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A mixed local-global variational approach and its application 
to a discontinuous potential 

J A Hendry 
Computer Centre, University of Birmingham, Birmingham B15 2lT,  UK 

Received 9 August 1978 

Abstract. A recently proposed regional variational method is used with a mixture of local 
and global trial functions to solve the Schrodinger equation for a discontinuous potential. 
Good results are obtained. In addition, it is illustrated how known features of the solution 
may be included in a conventional finite-element method, and the resulting equations 
solved efficiently. 

1. Introduction 

Variational methods have become popular for the numerical solution of differential 
equations. Two implementations have been developed, based on a global (global 
variational method, GVM; see Mikhlin 1971) or a local (finite-element method, FEM; see 
Strang and Fix 1973) approach to the trial function choice. In practice, both methods 
provide satisfactory results for suitably smooth problems, the GVM having the distinct 
advantage of a fast convergence rate (provided a ‘good’ choice of trial function is made) 
while the FEM is well suited for irregular shaped regions. Both methods, however, lead 
to poor results for problems containing non-smooth behaviour. In such situations it is 
usual to augment the systematic expansion set (typically orthogonal polynomials in a 
GVM or piece-wise continuous low-degree polynomials in a FEM) by specially con- 
structed core terms incorporating the features of the non-smooth behaviour. This 
approach, while apparently attractive, is not without numerical problems due to the 
presence of two types of term close to the singularity (see Fix et a1 1973). 

Recently, a new variational approach, the global element method, GEM, has been 
proposed (Delves and Hall, 1976). The GEM tries to retain the good features of both the 
FEM and GVM. In the GEM, the region under consideration is subdivided into a small 
number of subregions and a suitable trial function chosen in each subregion. This 
choice of trial function is simplified by the implicit (rather than explicit, as in the FEM) 
imposition of suitable continuity conditions across the subregion interfaces. If desired, 
the boundary conditions may also be treated in an implicit manner. 

When a conventional GVM or FEM is used to solve the Schrodinger equation with a 
discontinuous potential (e.g. square well), a slow convergence rate is obtained (due to 
the presence of a second-derivative discontinuity in the wavefunction). The con- 
vergence rate can be improved by incorporating specially constructed core terms in the 
trial function as in Hendry and Hennell (1976, referred to as HH1) and Hendry and 
Hennell (1977). The GEM has also been applied to such a system, using orthogonal 
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polynomials in each subregion, with good results and a very fast (approximately 
exponential) convergence rate (see Hendry and Hennell 1978, referred to as HH2). 

As originally proposed, it was anticipated that a global choice of trial function would 
be made in each subregion of the GEM. However, this is not necessary. In this paper, a 
GEM calculation is described with a localised choice of trial functions in one subregion 
together with a global choice of trial function in subregions where the solution 
behaviour is known. The linear equations which arise in this case reflect the trial 
function choice in each subregion and can be solved efficiently by a modification of the 
scheme proposed by Delves and Phillips (1976). 

2. Problem and global element method 

2.1. The problem 

The s-wave scattering of a two-body system is described by ( k 2  is the energy) 

d2 ZU= - - + V ( r ) - k  ( dr2 
r E [0 ,  001, ( 2 . 1 ~ )  

Asymptotically ( r  + CO), 

u + F + q G  

where 

F = (sin k r ) / k  G = cos kr q = (tan S ) / k  

and S is the scattering phase-shift. Near r = 0, 

u ( r )  - r. (2.1 b )  

In this paper it is assumed that the potential V(r )  has a discontinuity at r = r, and, in 
particular, use is made of the 'So potential of Bressel et a1 (1969), referred to as BKR 
(see HH1 for a detailed description of this potential). The BKR potential is constant 
and repulsive for 0 S r < r, and attractive for r > rc. 

2.2. The GEM approach 

From the form of the potential V, it is natural to identify three subregions for equation 
(2.1): 

(i) a core region, c, 0 s r s r,; 
(ii) a middle region, m, rc S r S rb; 

(iii) a background region, b, where the effects of V are negligible, r b rb.  
In the GEM, equation (2.1) is replaced by the coupled problems 

2 u ,  = 0 I = c, m, b ( 2 . 2 ~ )  

subject to the boundary conditions 

( 2 . 2 6 )  
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and the interface conditions 

Note that the interface conditions at rc are exactly the physical conditions for the 
solution of the Schrodinger equation with a discontinuous potential. It can then be 
shown (see HH2 for details) that the functional 

-(WcW:)r=O-(WmW: - wkwc)r=rc-(wbwk - w L w ~ ) ~ = %  (2.3) 

is stationary about the solution of equation ( 2 . 2 ~ )  for arbitrary variations in the trial 
functions wf without these trial functions satisfying explicitly either the boundary 
conditions (2.26) or the interface conditions (2.2c), but with 

W b  = F qfG + W w+O, r + m .  

Functional (2.3) gives a second-order estimate q12) of the scattering parameter q and is 
very similar to the conventional Kohn variational principle (referred to as CKVP; see 
Delves 1973) for equations like (2.1). 

Introducing suitable expansion sets in each subregion 1 
NI 

wr = C ~.ihr,i l = c , m  
i = l  

N .  (2.4) 

and finding the stationary value of (2.3) leads to the 4 X 4 block symmetric matrix 
equation for the parameters q i :  

Some typical matrix elements in (2.5) are 

(Y[ = (YlJ i =  1 , .  . . , N I  

Similar definitions apply for the remaining quantities in (2 .5 ) .  

1 = c, m, b. 
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2.3. Choice of trial functions 

In subregions c, b, the trial functions are as previously used in HH2: 

( 2 . 7 ~ )  
hb.i = ~ , - ~ ( 2 ~ ( r  - rb))  e-Or i = 1,  . . . , N b  

where Li is a Laguerre polynomial. Note that there is only one trial function in 
subregion c, the known exact solution. Thus in equation (2 .5) ,  L,,, a,  are scalar and B,, 
is a vector. 

In subregion m, a local form of trial function is used. The subregion was first 
mapped to x E [0, M ] ,  for some suitable integer M, and the trial function written as 

(2 .7b)  

where Bj is the cubic B-spline centred at x = j and only these portions of the spline lying 
in x E [0, MI are relevant (see HH1 for details). In the notation of equation (2.4), 

N , = M + 3 .  

2.4. Solution of linear equations 

As in the CKVP, equation (2.5) is first reduced to a pair of equations 

4, = ;( 1 - 2LGF f ~ B : G  . a ,  -k 2LtG . ab)/(LGG - B ~ G  . b ,  - L ~ G  , bb). 

For the choice of trial functions (2 .7) ,  L,, is scalar and zero, while B,, is a row vector. 
Thus the solution of (2.8) can be further reduced to 

( 2 . 9 ~ )  

where 

a1 = all - aca21 

a, = Bcm alm/Bcm a 2 m .  

1 =m,  b 

(A similar result holds for the equations corresponding to b,, b,, bb in (2 .8) . )  

like ( 2 . 9 ~ ) .  For simplicity, the discussion here is restricted to the single equation 
The structure of Bmb can now be exploited to solve efficiently a system of equations 

(2.9b) 
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From equation (2.6), 

where 

and each yi is a scalar. 
Provided that the yi are known, (2.10) can easily be solved as 

d m  = x m -  U t y t y m -  ~ 2 ~ 2 z m  

d b  = x b -  U 3 y 3 y b - g 4 Y 4 z b  

with 

(2.10) 

(2.11a) 

(2.116) 

The yI are found by premultiplying (2.11a) by d, etc, to get a 4 x 4  set of equations 

1 0 f f 3 a  Q y b  U 4 @ .  z b  &?a xb 

U l d A Y ’ .  0 y, U 2 d ’ .  1 zm U 3 . 9 ’ .  1 y b  U44.9’  0 * zb][ij]  = [a’ dnv’ . X, x b ]  . (2.12) 

UlYU ym U z d  . z ,  0 1 A . X ,  

Thus the solution of (2.9) can be found by first solving (2.116) for the x, y, z (which 
merely requires the solution of matrices on the diagonal blocks), and then constructing 
and solving (2.12) for yi to enable the solution to be found using (2.11a). 

Note that in the present work L,, is banded while Lbb is full, and hence the solution 
of (2.11b) can be performed with a suitable equation solver for each subregion. 
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The procedure outlined here is based on that given by Delves and Phillips (1976). 
For the more general case when L,, and B,, are matrices, an analogous procedure can 
be carried out on B,,, resulting in the inversion of matrices only on the diagonal blocks. 

3. Results and discussion 

3.1. Present results 

The results from the method outlined in 99 2.2 and 2.3  are shown in figure 1. The 
subregion m was linearly mapped, 

rb - rc r = (-)x + r,, M 

and a suitable choice for rb was found to be rb = 3r,. For convenience M = 2Nb,  there 

l o  

’0-31 o v  

I V 

l a ’  109 k(b’ x X 

10-1 
V 

X 
x x  

N 

Figure 1. ( a )  Convergence of the computed value 4:’’ to exact value q against total number 
of variational parameters N. x,  present results; 0, using method of HH1; 0, using method 
of HH2. The straight line has gradient -6. ( b )  Convergence of computed value of 
second-derivative discontinuity D at r ,  to the exact value against total number of variational 
parameters N. The notation is the same as in (a) and the straight line has gradient -1. (c) 
Function interface conditions against N. X ,  r,; 0, rb. The straight lines have gradient -3. 
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thus being a total of N = 4 + 3Nb variational parameters. The nonlinear parameter p in 
equation (2.7) had the value 1.5 and k = 0.7,  these being the values used earlier in HH2. 
Figure l ( a )  shows the convergence of the second-order estimate q;’) to the exact value 
q (taken from HH2) as a function of N. As N increases, satisfactory convergence is 
obtained, the convergence rate, as indicated by the gradient of the straight line, being 
approximately o ( N - ~ ) ,  i.e. for large N 

14;’) - 4 1  = C N - ~  C =constant. 

Figure l ( b )  shows results for the convergence of the computed second-order derivative 
discontinuity D at rc to the exact value (see HH2 for the definition of these quantities). 
Again, satisfactory convergence is obtained, the rate being approximately O(N-’). 

These results should be contrasted with those which would be obtained from a 
CKVP calculation using a continuous trial function. For such calculations for a smooth 
potential, a convergence rate 0(K6) for 4:’’ would be expected, while for a dis- 
continuous potential a significantly lower rate would be obtained. (The results in HH1 
would indicate O(N-’).) Thus the method outlined in the present paper has enabled the 
recovery of the 0 ( N w 6 )  convergence rate for a discontinuous potential while at the same 
time reproducing the second-derivative discontinuity present in the solution. 

An important feature of the GEM is the implicit imposition of the interface 
conditions ( 2 . 2 ~ ) .  Figure l (c )  shows the results for the function interface conditions at 
rc, Tb. Here the quantities 

Iwcbc-) - wln(rc+)l IWrn(rb-)- wb(rb+)l 

have been plotted against N. As N increases, both quantities decrease. Furthermore, 
on either side of the interfaces, the solutions stabilise indicating that the interface 
conditions are being reproduced. As indicated, the results at rc are well fitted by a line of 
gradient -3 but those at rb would appear to converge somewhat faster (perhaps due to 
the influence of the global trial functions). 

Similar results are obtained for the derivative interface conditions. 

3.2. Comparison with previous methods 

In HH1 a scheme for including a suitable discontinuous term in a cubic spline basis was 
described and applied to the binding energy of the BKR potential (via the Rayleigh- 
Ritz principle). Figure 1 also contains the results from this approach modified to fit into 
the CKVP. The trial function is then 

M - 2  
w = P + q r d +  ciS,(x)+bkQk(x) 

i = O  

where and d satisfy the boundary conditions at r = 0 and have the correct asymptotic 
form F, G. The Si (x )  are combinations of the B-splines satisfying the boundary 
conditions at r = 0 while Q k  is a specially constructed spline having a second-derivative 
discontinuity at x = k.  The infinite region r E [0,00] was mapped to x E [0, MI by 

r = a x / ( M  - x ) ,  

CY being chosen so that x = k corresponded to r = rc and was at a fixed ratio R to the end 
point x = M (see HH1 for fuller details). The results presented correspond to R = 3.0,  
this appearing from experiment to be the optimal value. Again for 41’) and D 



778 J A Hendry 

convergence rates of approximately O(N-6)  and O(N-’) are obtained. However, 
judged by the criteria of the total number of variational parameters N, these results are 
inferior to those of 0 3.1, being about 100 times less accurate for 4;’) and about 10 times 
worse for D. 

Figure 1 also shows the results from HH2 for a GEM calculation using global 
functions everywhere (i.e. Legendre polynomials were used in subregion m). As 
indicated, very fast (exponential) convergence is obtained. For small N, these are the 
worst results presented, but for N P 20 they are significantly better (especially for D). 
Presumably in both regional methods there are overheads due to the implicit satis- 
faction of the interface conditions. It is interesting to note that these appear to be less 
significant for small N when using the spline basis. 

3.3. Solution of the linear equations 

As indicated in 0 2.4, an efficient solution technique (avoiding the direct solution of the 
full matrix equation (2.8)) is possible. Figure 2 shows the solution times plotted against 
N b  using 

(i) a direct solver (Gauss) on equation (2.8); 
(ii) the rank modification scheme of equations (2.11) and (2.12) using a banded 

solver for L,, (and a direct solver for Lbb). 

Figure 2. Timings (arbitrary units) for equation solution against Nb. X, direct method: 0, 
rank modification method. The straight lines have gradient 3 and 1 as indicated. 

As can be seen, the times in (i) grow rapidly and for large N b  approach the O(N2)  cost, 
indicated by the straight line, that would be expected. 

The corresponding times for (ii) are much smaller and, over the range of N b  shown, 
depend linearly on N b  (due to banded solver). Ultimately these times would also rise 
like NZ since a direct solver was used for Lbb. Nevertheless, these timings indicate that 
there are savings to be obtained by using the rank modification solution scheme. 
Indeed, further savings could be obtained by using the iterative solver described by 
Delves and Phillips (1976) for Lbb (with associated cost o ( N ~ ) ) .  
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4. Conclusions 

In this paper, it has been demonstrated that a regional variational method (with implicit 
matching across interfaces) can successfully reproduce the discontinuity present in the 
solution of the Schrodinger equation with a discontinuous potential. It would also 
appear that the results are better than those from a conventional approach using cubic 
splines augmented by a single discontinuous term. 

Moreover, a possible method of including known solution features in a FEM 
calculation (without having two types of trial function in any part of the region) has been 
indicated. The equations which result from such an approach can be solved by 
techniques reflecting the structure of the trial function in various subregions. This latter 
point is important since it permits the extension of existing FEM programs in a relatively 
straightforward manner. 
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